Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J Genet ; 2007 Dec; 86(3): 217-24
Article in English | IMSEAR | ID: sea-114338

ABSTRACT

Male accessory gland secretory protein polymorphism was analysed in natural populations of Drosophila nasuta nasuta and D. sulfurigaster neonasuta for the first time, using SDS-PAGE to score polymorphism of these proteins in 2788 individuals of D. n. nasuta and 2232 individuals of D. s. neonasuta from 12 different populations from southern India. A total of 25 and 18 variant protein phenotypes were identified in D. n. nasuta and D. s. neonasuta, respectively. Protein fractions of group III were more polymorphic than those from groups I and II. The results show that accessory gland secretory proteins show high levels of polymorphism, irrespective of species or habitat. Moreover, we have used the variation in the accessory gland proteins to assess the extent of divergence between the species and to infer their population structure. The study suggests that though both D. n. nasuta and D. s. neonasuta belong to the same subgroup, they differ in population structure, as far as accessory gland protein polymorphism is concerned.


Subject(s)
Animals , Drosophila/classification , Drosophila Proteins/genetics , Genetics, Population , Genitalia, Male/metabolism , India , Male , Phenotype , Polymorphism, Genetic , Species Specificity
2.
Indian J Exp Biol ; 2003 Dec; 41(12): 1372-83
Article in English | IMSEAR | ID: sea-56258

ABSTRACT

Male accessory gland in Drosophila is a secretory tissue of the reproductive system. The proteins synthesized in the accessory gland are tissue specific, stage specific-seen only during the adult stage and sex specific in the sense of male limited expression. These secretions that form a component of the seminal fluid are transferred to the female at the time of copulation and play an important role in reproduction. In conjunction with sperm, these secretory proteins assure reproductive success by reducing the female's receptivity to mating and escalating the rate of egg laying. Some of these proteins are antibacterial in nature with a likely function of protecting the female's genital tract against microbial infection during/after mating. Most of the genes involved in the synthesis of accessory gland proteins are autosomal but a few are still X-linked. Their male specific expression is achieved at the time of sex determination. The level of expression of these genes is dose dependent and they follow Mendelian pattern of segregation. Further, majority of these proteins are rapidly evolving with high rates of non-synonymous substitutions. In this review, by considering the work carried out in different fields, we have tried to generate a comprehensive picture about the male accessory gland and the role of its proteins in the reproduction of Drosophila.


Subject(s)
Animals , Drosophila , Gene Expression Regulation , Genitalia, Male/metabolism , Male , Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL